
CPS122 Lecture: Detailed Design and Implementation

Last revised March 3, 2017
Objectives:

1. To introduce the use of a complete UML class box to document the name,
attributes, and methods of a class

2. To show how information flows from an interaction diagram to a class design
3. To introduce test-first development
4. To review javadoc class documentation
5. To introduce method preconditions, postconditions; class invariants.

 Materials :

1. Diagrams for UMLImplementation labs and class EnrolledIn:
a. Overall class structure
b. CRC Card for EnrolledIn
c. Sequence Diagrams for Grade, Course Report, and Student Report use cases
d. Detailed design for EnrolledIn
e. Netbeans project with skeleton of class EnrolledIn (methods not

implemented) and no JUnit tests.
f. Netbeans project with completed tests.
g. Netbeans project with completed tests and code.

2. Javadoc documentation for UMLImplementation labs classes and projectable of
source code for class RegistrationModel (class comment+selected methods
only).

3. Projectable of source code for team project SimpleDate class
4. Javadoc documentation for java.awt.BorderLayout (online) and projectable of

source code for constants
5. Gries’ coffee can problem - demo plus handout of code

I. Introduction

A. Preliminary note: we will weave the quick-check questions on chapter
10 into presentation instead of going through them all at the outset.

1

B. So far in the course we have been focussing our attention on two tasks
that are part of the process of developing software: analysis and
(overall) design. To do this, we have looked at several tools:

1. Class diagrams - a tool to show the various classes needed for a
system, and to identify relationships between these classes - a tool
to help us document the static structure of a system.

2. CRC cards - a tool to help us identify the responsibilities of each class.

3. Interaction diagrams - a tool to help us document what we
discovered by using CRC cards, by showing how each use case is
realized by the interaction of cooperating objects - one of several
tools to help us capture the dynamic behavior of a system.

4. State Diagrams - a tool to help capture the dynamic behavior of
individual objects (where appropriate).

C. We have noted that, in developing CRC cards and interaction
diagrams, we often discover the need for additional classes beyond
those we initially discovered when we were analyzing the domain.

1. These include classes for boundary objects and controller objects.
In fact, a use case will typically be started by some boundary
object, and may make use of additional boundary objects to
acquire the information it needs. It will have generally have some
controller object be responsible for carrying it out.

2. One writer has estimated that the total number of classes in an
application will typically be about 5 times the number initially
discovered during analysis.

D. We now turn to implementation phase.

2

1. Here, we will focus on building the individual classes, using the CRC
Cards and class diagram to identify the classes that need to be built,
and the interaction and state diagrams (and CRC cards) to help us
build each class.

2. There are actually three kinds of activity that are part of this:

a) Detailed design of the individual classes

(1) In overall design, we are concerned with identifying the
classes and discovering their relationships. One of the end
results of overall design is a class diagram, showing the
various classes and how they relate to one another.

(2) In detailed design, we focus on each individual class.

(a) Quick check question (a)

(b) In detailed design, we develop:

i) A class’s interface - what “face” it presents to the rest
of the system

ii) Its implementation - how we will actually realize the
behavior prescribed by the interface.

(c) To document this, we may draw a more detailed UML
representation for the class: a rectangle with three
compartments:

i) Class name

ii) Attributes (instance variables)

iii)Operations (methods)

3

(d)A note on notational conventions - UML uses a somewhat
different notation than Java does for specifying attributes
and operations

i) Quick check question (e) - format for attribute
(instance variable) signature

Visibility Name : Type

where visibility is + for public, # for protected, and -
for private.

ii) Quick check question (f) - format for operation
(method) signature

Visibility Name(Parameter : Type ...) : Return Type

where again visibility is + for public, # for protected,
and - for private.

b) Writing the code for the various methods of the class

c) Unit testing each method to be sure it does what it is supposed to
do.

E. For our examples we will use a class from the next labs you will be doing
- a system that manages student registrations in courses - the class
EnrolledIn

1. Project overall class structure

2. Note that the class EnrolledIn is an association class because it has
to hold a grade which is specific to the enrollment of a specific student
in a specific course.

4

3. The responsibilities of this class might be given by the following CRC
card.

PROJECT CRC Card for EnrolledIn

4. It actually participates in several use cases that give rise to several
sequence diagrams:

PROJECT sequence diagrams for Grade Student, Course Report, and
Student Report use cases.

II. Deciding on the Instance Variables of a Class

A. In detailed design we represent each class as a three-compartment box
in which the middle compartment represents the attributes of a class -
its instance variables.

B. How do we decide what instance variables a class needs?

1. Basically, the instance variables hold information about who (what
other objects) objects of the class know and what objects of the
class know.

2. The "who" question can be answered by looking at the associations
between this class and other classes in the class diagram.

Example: Show that EnrolledIn is associated with Course and
Student in class diagram

Show course and student in detailed design

3. The "what" question can be answered by looking at the CRC cards
- what does an object need to know in order to be able to fulfill its
responsibilities?

5

Example: Show CRC card for EnrolledIn again. Since it must
keep track of a student's grade, it needs a grade instance variable

PROJECT detailed design and show in grade

C. We covered material relevant to three of the quick-check questions for
this chapter in conjunction with our discussion of implementing
associations (not directly tied to a book chapter), so these questions
are a sort of review, but let's do them now

Quick-check questions (b), (c), (d)

III.Identifying the Methods of a Class

A. A key question in designing a class is “what methods does this class
need”? Here, our interaction diagrams are our primary resource.
Every message that an object of our class is shown as receiving in an
interaction diagram must be realized by a corresponding method in
our class’s interface.

1. As an example of this, consider again the interaction diagrams in
which EnrolledIn is involved.

PROJECT each and then show methods in detailed design

Observe that each of the methods in the design actually shows up a
message sent to an EnrolledIn object in some interaction. (Must
look at every interaction where EnrolledIn appears to find them all)

a) No other messages are sent to an EnrollediIn object in any
interaction, and no other ordinary operations (i.e. other than the
constructor) show up in the detailed design as a result.

6

2. Notice that we are only interested here in the messages a given
class of object receives; not in the messages it sends (which are
part of its implementation).

IV.Unit Testing / Test-First Development

A. As you may recall, we saw earlier that coding comprises about 1/6 of
the total effort on a project. How much effort do you think testing
comprises (or at least should comprise)?

ASK

About 50%!

(The fact that there's so much buggy software out there suggests that
what should be done and what actually is done are not the same
thing!)

B. We will talk more about testing later in the course, but for now note
that there are actually several different kinds of testing that need to be
done.

1. Unit testing tests the individual pieces of the system - e.g,, in an
OO system, the individual methods. Any errors discovered by this
process are fixed before development proceeds. We will look at an
approach to doing this shortly.

This should be done during implementation.

2. Integration puts several (already tested) units together to test how they
work together. Any errors discovered at this time are likely the result of
a misunderstanding about the interface of one of the methods.

EXAMPLE:

7

Suppose a certain method is required to compare two objects and return
true or false based on their relative order in a sorted list. Assume this
method is used by another method that actually sorts the objects.

Suppose the author of the method understands the expectation to be that
the method returns true if the first object belongs before the second, but
the author of a sorting method that uses it assumes that it returns true if
the second object belongs before the first.

Both methods would test successful during unit testing (based on their
author’s understanding of the interface between them.) However, the
error would show up in integration testing with the output being
backwards!

This, too, should be done during implementation.

3. System testing tests the overall functioning of the system relative
to the specifications (the use cases). By its very nature, this can't
be done until implementation is at least nearly complete.

4. Regression testing is the repetition of tests that have already been
passed after a fix/change has been made to be sure that the change
has not broken another part of the system.

a) This sort of testing is done as needed during implementation

b) It is also done during maintenance.

c) To facilitate this, tests are automated where possible. (We will
shortly see an example of this with unit tests).

5. The "50% of effort" rule of thumb includes all kinds of testing that
occur during implementation, of course.

8

C. Today, we are going to focus on a type of testing done as a class is
being implemented: unit testing.

1. Many software development organizations actually use an
approach to this known as test-first development.

a) The idea is this. Before writing the code for a method, one first
writes the specification (perhaps in the form of comments) and write
code to test the method before the method itself is actually written.

b) This may seem counter-intuitive - but the idea is that writing a
specification and a test helps clarify what is to be done before
actually doing it.

Experience has shown that this actually significantly improves
code quality and effort.

c) Last semester those of you who were in CPS121 saw an
approach like this using pydoc and pytest. We have already
seen that there is a similar facility for documenting Java code
known as javadoc, and we will shortly see that there is a similar
facility for unit testing Java cide known as JUnit.

d) You will use this approach during labs 9-11, and will also be
expected to use it on your team project. In fact, neither the TA
nor I will give you any help with code unless we first see your
specification in the form of prologue comments and - in the
case of model classes - your JUnit tests.

2. As an example of this, consider the class EnrolledIn.

a) Open NetBeans project that contains just a skeleton of this class.

PROJECT skeleton of class (comments and method prototypes).

9

b) Before we actually begin writing code for these methods we can
develop mechanisms for testing them.

c) Demonstrate creating JUnit tests using NetBeans - then show
contents of created file.

d) Open project with completed tests and show tests.

Note that it was necessary to "stub out" methods that return
values to allow code to compile

e) Demo implementation of a couple of methods and show results
in testing

f) Open project with completed tests and code and demo testing.

g) Demo some errors and show how JUnit catches:

(1)Omit assignment of grade in setGrade()

(2)Omit initialization of student in Constructor

(3)Omit initialization of grade in Constructor

V. More About Designing the Interface of a class

A. The interface of a class is the “face” that it presents to other classes -
i.e. its public features.

1. In a UML class diagram, public features are denoted by a “+”
symbol. In Java, of course, these features will actually be declared
as public in the code.

2. The interface of a class needs to be designed carefully. Other
classes will depend only on the public interface of a given class.

10

We are free to change the implementation without forcing other
classes to change; but if we change the interface, then any class
that depends on it may also have to change. Thus, we want our
interface design to be stable and complete.

B. An important starting point for designing a class is to write out a brief
statement of what its basic role is - what does it represent and/or do in
the overall context of the system.

1. If the class is properly cohesive, this will be a single statement.

2. If we cannot come up with such a statement, it may be that we
don’t have a properly cohesive class!

3. We have been documenting our classes using javadoc. One
component of the javadoc documentation for the class is a class
comment - which spells out the purpose of the class. (We will
review other javadoc features at the appropriate point later on.)

EXAMPLE:

a) Show online documentation for UML Implementation Labs classes

b) PROJECT: javadoc class comment in the source code for class
RegistrationModel.

C. Languages like Java allow the interface of a class to include both
attributes (fields) and behaviors (methods). It is almost always the case
that fields should be private or protected (some writers would argue
always, not just almost always), so that the interface consists only of:

1. Methods

2. Constants (public static final ...)

11

3. Note that, while good design dictates that methods and constants
may be part of the public interface of a given class, good design
does not require that all methods and constants be part of the
public interface. If we have some methods and/or constants that
are needed for the implementation of the class, but are not used by
the “outside world”, they belong to the private implementation .

4. In general, we should use javadoc to document each feature that is
part of the public interface of a class - including any protected
features that, while not publicly accessible, are yet needed by
subclasses. Using javadoc for private features may be helpful to a
maintainer; but the javadoc program, by default, does not include
private features in the documentation it generates.

D. An important principle of good design is that our methods should be
cohesive - i.e. each method should perform a single, well-defined task.

a) A way to check for cohesion is to see if it is possible to write a
simple statement that describes what the method does.

b) In fact, this statement will later become part of the
documentation for the method - so writing it now will save time
later.

EXAMPLE: Look at documentation for class java.io.File.
Note descriptions of each method.

c) The method name should clearly reflect the description of what
the method does. Often, the name will be a single verb, or a
verb and an object. The name may be an imperative verb - if
the basic task of the method is to do something; or it may be an
interrogative verb - if the basic task of the method is to answer
a question.

EXAMPLE: Note examples of each in methods of File.

12

d) Something to watch out for - both in method descriptions and in
method names - is the need to use conjunctions like “and”.
This is often a symptom of a method that is not cohesive.

2. Another important consideration in designing a method is the
parameters needed by the method.

a) Parameters are typically used to pass information into the method.
Thus, in designing a parameter list, a key question to ask is “what
does the sender of the message know that this method needs to
know?” Each such piece of information will need to be a parameter.

b) There is a principle of narrow interfaces which suggests that we
should try to find the minimal set of parameters necessary to
allow the method to do its job.

EXAMPLE: Discuss parameter lists for each message in the
Session Interaction

3. A third important consideration is the return value of the method.

a) A question to ask: does the sender of this message need to learn
anything new as a result of sending this message?

b) Typically, information is returned by a message through a return
value.

EXAMPLE: Show examples in Session interaction

c) Sometimes, a parameter must be used - an object which the method is
allowed to alter, and the caller of the method sees the changes.

EXAMPLE:

The balances parameter to the sendToBank() method of the various
types of transaction - SHOW in Withdrawal interaction. Note that this
method has to return two pieces of information to its caller:

13

(1)A status

(2) If successful, current balances of the account

SHOW Code for class banking.Balances

4. Just as we use a javadoc class comment to document each class,
we use a javadoc method comment to document each method. The
documentation for a method includes:

a) A statement of the purpose of the method. (Which should,
again, be a single statement if the method is cohesive).

b) A description of the parameters of the method.

c) A description of the return value - if any.

SHOW: Documentation for course-related methods of class
RegistrationModel for UMLImplementation labs.

PROJECT: java source code for these methods, showing
javadoc comment.

d) Netbeans can help to generate these

(1)Type method prologue

(2)Type /** on line before method

(3)Press enter key (on keypad - not return)

DEMO

14

(4)But note that - but note that it is vital to complete the comment
by explaining the purpose of the method, the purpose of each
parameter., and the meaning of any return value.

E. Sometimes, another issue to consider in determining the methods of an
object is the “common object interface” - methods declared in class Object
(which is the ultimate base class of all classes) that can be overridden where
appropriate. Most of the time, you will not need to worry about any of
these. The ones you are most likely to need to override are:

1. The boolean equals(Object) method used for comparisons for
equality of value.

2. The String toString() method used to create a printable
representation of the object - sometimes useful when debugging.

EXAMPLE: Show overrides in class SimpleDate for project.

F. In the case of class hierarchies, we need to think about what level in
the hierarchy each attribute belongs on.

Recall the "Pet Kennel" lab

G. While the bulk of a class’s interface will typically be methods, it is
also sometimes useful to define symbolic constants that can serve as
parameters to these methods

1. EXAMPLE: java.awt.BorderLayout

2. In Java, constants are declared as final static. A convention in Java
is to give constants names consisting of all upper-case letters,
separated by underscores if need be.

3. Public constants should also be documented via javadoc

SHOW Documentation for constants of class java.awt.BorderLayout

PROJECT: source code showing javadoc comments.

15

VI.Preconditions, Postconditions, and Invariants,

A. As part of designing the interface for a class, it is useful to think about
the preconditions and postconditions for the various methods, and
about class invariants.

1. A precondition for a method is a statement of what must be true in order
for the method to be validly called.

EXAMPLE:

As you may discover in lab, the remove(int) method of a List collection
can be used to remove a specific element of a List. However, the
method has a precondition that the specified element must exist - e.g.
you can’t remove the element at position 5 from a list that contains 3
elements, nor can you remove the element at position 0 (the first
position) from an empty list.

What happens if you fail to observe this precondition?

ASK

2. A postcondition for a method is a statement of what the method
will guarantee to be true - provided it is called with its precondition
satisfied.

EXAMPLE: The postcondition for the remove(int) method of a
List collection is that the specified element is removed and all
higher numbered elements (if any) are shifted down - e.g. if you
remove element 2 from a List, then element 3 (if there is one)
becomes the new element 2, element 4 (if there is one) becomes
new element 3, etc.

Note that a method is not required to guarantee its postcondition if
it is called with its precondition not satisfied. (In fact, it’s not
required to guarantee anything!)

16

3. A class invariant is a statement that is true of any object at any time
it is visible to other classes. An invariant satisfies two properties:

a) It is satisfied by any newly-constructed instance of the class.

Therefore, a primary responsibility of each constructor is to make
sure that any newly-constructed object satisfies the class invariant.

b) Calling a public method of the class with the invariant true and
the preconditions of the method satisfied results in the invariant
remaining true (though it may temporarily become false during
the execution of the method)

(1)Therefore, a primary responsibility of any public method is
to preserve the invariant.

(2)Technically, private methods are not required to preserve the
invariant - so long as public methods call them in such a
way as to restore the invariant before the public method
completes.

c) That is, the class invariant must be satisfied only in states which
are visible to other classes. It may temporarily become false
while a public method is being executed.

B. An example of method preconditions and postconditions plus class
invariants: David Gries’ Coffee Can problem

1. Explain the problem

2. DEMO

3. HANDOUT: CoffeeCan.java

a) Note preconditions and postconditions of the various methods

17

b) Note class invariant

c) It turns out that the question “what is the relationship between
the initial conditions and the color of the final bean?” can be
answered by discovering an additional component of the
invariant.

ASK CLASS TO THINK ABOUT:

(1)Relationship between initial contents of can and final bean
color.

(2)A clause that could legitimately be added to the invariant
which makes this behavior obvious.

VII.Some Final Thoughts on Detailed Design/Implementation

A. If a class has been designed correctly, and each method has been
specified via preconditions and postconditions, this is usually
straightforward. (Title of talk at OOPSLA Educator’s symposium in
1999 - “Teach design - everything else is SMOP (a simple matter of
programming)”).

B. Sometimes, in implementing methods, we discover that it would be
useful to introduce one or more private methods that facilitate the
tasks of the public methods by performing well-defined subtasks.

C. A final consideration is the physical arrangement of the source code
for a class. A reasonable way to order the various methods and
variables of a class is as follows:

1. Immediately precede the class declaration with a class comment
that states the purpose of the class.

18

2. Put public members (which are part of the interface) first - then
private members. That way a reader of the class who is interested
in its interface can stop reading when he/she gets to the
implementation details in the private part.

3. Organize the public interface members in the following order:

a) Class constants (if any)

b) Constructor(s)

c) Mutators

d) Accessors

4. In the private section, put method first, then variables.

5. If the class contains any test driver code, put this last.

19

